If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12b^2+9b=0
a = 12; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·12·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*12}=\frac{-18}{24} =-3/4 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*12}=\frac{0}{24} =0 $
| 7(-6n+3)-2=107 | | -8q=18-10q | | 2+2v=7v+7 | | 2u−4=12 | | 3m=8.4 | | 5(2x+6)=-48+58 | | 97=7(1+2y)-8 | | {x}{-5}=−5x=7 | | 2x-5-14=x-1 | | 1/2(2x+1)=1/3(3+2x) | | -3(2x+1)-1=18 | | -(12x-6)=-6-12x | | 6.47=u+4.47 | | 3x+9+x+12=21 | | 3x+1+2x=3+4x | | 11x+16+82=180 | | -9-(18v-5)=2(7v-16-3v | | -3.2z+11.48=-13.5z-18.1+7.4z | | 5(x-4)-32=72 | | 24=6(-x+2 | | `73=-6(k-7)+6(k+5) | | -4(-4y+5)-6y=4(y-1)-2 | | w-10=10-4w | | 2x+2-19=x-2 | | 3x+4=12x-8 | | 37+6a=1+3(3a+4) | | 3v+1-3(-3v-1)=6(v-1) | | -3x-5-10x=-18 | | -3/8x+1/2=1/4x-2 | | -2(z+-29)=-2 | | 2x^2+3×=27 | | 1-6j=13-7j |